1 概述
自從100多年前,以燃燒石油制品為動(dòng)力的機器誕生以來(lái),對石油的需求量飛速增長(cháng),也為石油工業(yè)的發(fā)展提供了契機。隨著(zhù)采油業(yè)的發(fā)展,產(chǎn)生了被廣泛使用的油井舉升設備——抽油機。
抽油機的種類(lèi)繁多,技術(shù)發(fā)明有數百種。從采油方式上可分為兩類(lèi),即有桿類(lèi)采油設備和無(wú)桿類(lèi)采油設備。有桿類(lèi)采油設備又可分為抽油桿往復運動(dòng)類(lèi)(國內外大量使用的游梁式抽油機和無(wú)游梁式抽油機)和旋轉運動(dòng)類(lèi)(如電動(dòng)潛油螺桿泵);無(wú)桿類(lèi)采油設備也可分為電動(dòng)潛油離心泵,液壓驅動(dòng)類(lèi)(如水力活塞泵)和氣舉采油設備。
目前,應用最為廣泛的是游梁式豎井抽油機采油系統,如圖1所示。由圖1可見(jiàn),該系統由3部分組成,即地面部分——游梁式抽油機,它由電動(dòng)機、減速箱和四連桿機構(包括曲柄、連桿和游梁)等組成,詳細結構見(jiàn)圖2;井下部分——抽油泵(包括吸入閥、泵筒、柱塞和排出閥等),它懸掛在套管中油管的下端,可分為桿式泵和管式泵;聯(lián)接地面抽油機和井下抽油泵的中間部分——抽油桿柱,它由一種或幾種直徑的抽油桿和接箍組成。
我國的油田不像中東的油田那樣有很強的自噴能力,多為低滲透的低能、低產(chǎn)油田,大部分油田要靠注水壓油入井,再用抽油機把油從地層中提升上來(lái)。以水換油或者以電換油是我國油田的現實(shí),因而,電費在我國的石油開(kāi)采成本中占了相當大的比例,所以,石油行業(yè)十分重視節約電能。
目前,我國抽油機的保有量在10萬(wàn)臺以上,電動(dòng)機裝機總容量在3500MW,每年耗電量逾百億kW·h。抽油機的運行效率特別低,在我國平均效率為25.96%,而國外平均水平為30.05%,年節能潛力可達幾十億kW·h。除了抽油機之外,油田還有大量的注水泵、輸油泵和潛油泵等設備,總耗電量超過(guò)油田總用電量的80%,可見(jiàn),石油行業(yè)也是推廣“電機系統節能”的重點(diǎn)行業(yè)。
抽油機節能包括節能型抽油機和抽油機節能電控裝置的研制與推廣兩個(gè)方面,對此兩大技術(shù)的研究方興未艾。介紹和宣傳的文章很多,眾說(shuō)紛紜,莫衷一是。廠(chǎng)家的產(chǎn)品性能介紹亦有“王婆賣(mài)瓜”之嫌。因此,有必要將目前常見(jiàn)的幾種類(lèi)型的抽油機節能電控裝置作一個(gè)科學(xué)的分析比較,以供用戶(hù)選用時(shí)參考。在全國各油田進(jìn)行試驗或已投運的節能電控裝置不下數十種之多,大體上可以分為5種類(lèi)型,下面分別加以討論。
2 間抽控制器(POC)
由于抽油機是按照油井最大化的抽取量來(lái)進(jìn)行選擇的,并且還留有設計余量。另外,隨著(zhù)油井由淺入深的抽取,井中液面逐漸下降,泵的充滿(mǎn)度越來(lái)越不足,直到最后發(fā)生空抽的現象,如果不加以控制,就會(huì )白白地浪費大量的電能。對于這種油井,最簡(jiǎn)單的方法是實(shí)行間抽,即當油井出液量不足或發(fā)生空抽時(shí),就關(guān)閉抽油機,等待井下液量的蓄積,當液面超過(guò)一定深度時(shí),再開(kāi)啟抽油機,這樣就提高了抽油機的工作效率,避免了大量的電能浪費。
間抽控制的原始做法是派人定時(shí)到油井去開(kāi)停抽油機,即使在發(fā)達國家,目前也還有不少油井采用這種人工控制方式,以便解決抽油機的低效和浪費問(wèn)題。這種做法每天要派人去井場(chǎng)操作好幾次,經(jīng)過(guò)長(cháng)期試驗才能摸索出適合各油井的間抽規律,費工費時(shí)。于是就引入了定時(shí)鐘,只須設定開(kāi)、停機時(shí)間,便能自動(dòng)地進(jìn)行間抽控制,但是,這仍然無(wú)法解決令抽油機的工作能力動(dòng)態(tài)地響應油井負荷的變化,以達到最佳的節能效果,同時(shí),還有可能會(huì )影響油井的產(chǎn)量。
為了解決上述問(wèn)題,通過(guò)安裝相關(guān)的傳感器,精確感知油井負荷的動(dòng)態(tài)變化,實(shí)現智能間抽控制(IPOC)。為此,可采用各種不同的傳感器達到控制目的,下面分別予以介紹。
2.1 液面探測器
如果能直接測出井中的液面,那么就可以用它來(lái)控制抽油機的運行。當液面高度超過(guò)泵時(shí),就啟動(dòng)抽油機;當液面降到泵的吸入口處時(shí),就關(guān)閉抽油機,避免空抽的發(fā)生。早期的方法是使用永久式的井下壓力傳感器來(lái)檢測液面,現代則是利用聲波裝置從地面上自動(dòng)監測井下液面深度,但是,由于裝置復雜,維修費用高而沒(méi)有得到普及。
2.2 流量傳感器
在井口通過(guò)流量傳感器檢測油井的出液量,是實(shí)現抽油機控制最直接,也是最有效的方法。但是,由于國內的油井產(chǎn)量太低,有些油井的產(chǎn)量每天只有幾m3,甚至不足1m3,合10cm3/s。這么小的流量檢測,對于各種類(lèi)型的流量傳感器來(lái)講都是一個(gè)難題,再加上井中采出的油液中含有大量的泥沙和蠟塊,經(jīng)常會(huì )發(fā)生堵塞現象,因而也未能獲得推廣應用。
2.3 電機電流傳感器
應當說(shuō),電機電流的檢測是最方便、最可靠,也是最為廉價(jià)的方法。當發(fā)生空抽時(shí),下沖程開(kāi)始時(shí)游動(dòng)閥并沒(méi)有打開(kāi),光桿載荷為桿柱重量及游動(dòng)閥上部液柱的重量之和,可平衡掉大部分的配重的重量,電動(dòng)機只要用很小的能量就可將桿柱送入井底,電機電流較小;當油井中泵的充滿(mǎn)度較高時(shí),下沖程開(kāi)始不久,游動(dòng)閥即打開(kāi),泵中液面托住了游動(dòng)閥上部的液柱重量,并且使抽油桿柱也浸沒(méi)在液體中,因而光桿載荷只是桿柱在液體中的浮重,這也就意味著(zhù)電機將用較大的能量來(lái)舉起曲柄或游梁尾部的平衡塊的重量才能將桿柱送入井底,因而電流就較大。
在下沖程時(shí)設置一個(gè)設定值,當發(fā)生空抽時(shí),實(shí)際電流將降至此值以下,控制器就關(guān)閉抽油機。也可通過(guò)電機的平均電流進(jìn)行檢測,從實(shí)際平均電流的下降中也可很容易地鑒別出空抽的發(fā)生。但是,電流的檢測受到抽油機配重的影響而使實(shí)際的電機電流變得很難控制,絕不像某些膚淺的文章中所描述的那樣,是近似方波的電流波形。實(shí)際的抽油機電動(dòng)機的扭矩(電流)曲線(xiàn)如圖3所示。這種不規則的扭矩(電流)曲線(xiàn),只有通過(guò)抽油機的機械結構和平衡曲線(xiàn)的改變方能改變,而不是通過(guò)電控裝置可以實(shí)現的,因此,這是一個(gè)機電一體化的系統工程問(wèn)題。
圖3 采用普通異步電動(dòng)機的標準抽油機上的慣性扭矩當量
2.4 抽油桿載荷傳感器
普遍采用的方法是通過(guò)特制的傳感器,對抽油機的光桿載荷進(jìn)行檢測,因為,光桿載荷是井下泵運行情況的最好監視器,并且它不受平衡配重的影響。泵的充盈系數(包括空抽)通過(guò)對抽油桿載荷的分析可以很容易地被檢測出來(lái)。另外,更重要的是抽油桿載荷數據,加上抽油桿位置的信息,正是分析井下工況的“示功圖”的必備數據,利用這些信息可對抽油機的運行情況進(jìn)行全面的分析。
在光桿或游梁上安裝測力傳感器可以測出抽油桿的載荷數據。光桿測力傳感器比較準確,但易于損壞;安裝在游梁上的傳感器準確度比較低,但比較耐用。國內已有抽油機專(zhuān)用的測力傳感器產(chǎn)品。利用載荷傳感器的數據繪制的示功圖,檢測抽空控制設備的工作原理如圖4所示。
抽空控制最可靠的一個(gè)方法是計算光桿所做的機械功,因為,機械功與被示功圖所封閉的面積成正比,所以,空抽表明輸入到系統中的能量減少,只須計算示功圖的面積或一部分面積即可檢測抽空條件。其方法包括在示功圖上設定兩條垂直線(xiàn),計算這兩條抽油桿位置線(xiàn)之間示功圖的面積或曲線(xiàn)下面的面積,如果用示功圖里面的面積,可檢測出圖4中的面積1減少了;如果用示功圖下面的面積,則可檢測出面積2增加了。
(a) 抽油桿載荷傳感在設定點(diǎn)處的桿載荷
(b) 變化的載荷量
(c) 抽油桿所做的機械功
圖4 監測抽油桿載荷裝置的抽空控制設備的工作原理
同時(shí),也可像電機電流信號一樣,通過(guò)計算光桿載荷平均值的辦法來(lái)檢測抽空的發(fā)生,較高的載荷平均值表示有可能發(fā)生空抽,而較低的載荷平均值則表示油井中液量多。
總之,間抽控制器的優(yōu)點(diǎn)和經(jīng)濟效益是顯而易見(jiàn)的。
1)由于縮短了抽油時(shí)間,大大減少了能量消耗。但是,在用人工控制和定時(shí)自動(dòng)控制間抽時(shí),由于惟恐減產(chǎn),幾乎都會(huì )發(fā)生實(shí)際抽油時(shí)間比必要的抽油時(shí)間長(cháng)的情形,因而不能完全避免空抽。通過(guò)傳感器信號實(shí)現閉環(huán)控制的智能間抽控制器(IPOC),在檢測到空抽時(shí)立即關(guān)閉抽油機,避免了空抽的發(fā)生,平均可多節約能量20%~30%。
2)相對于人工間抽和定時(shí)間抽來(lái)講,智能間抽控制由于達到了較低的平均液面,增加了產(chǎn)量。因為,較低的液面意味著(zhù)較低的井底流壓,結果較多的液體流入井底,通??稍霎a(chǎn)1%~4%。
3)由于消除了液擊現象,可使井下和地面設備的維修費用減少25%~30%。另外,通過(guò)IPOC裝置可提前探測到油井故障,從而進(jìn)一步減少了所需的修井作業(yè)量。
4)使用微電腦技術(shù)的IPOC裝置大大增加了抽油系統的性能信息檢測數據,為抽油機的遙控遙測及集中控制創(chuàng )造了條件。
3 軟起動(dòng)及調壓節能型
由于抽油機的功率檔次有限,如30kN,60kN,80kN,100kN等,而每一口油井的參數都不一樣,在選配抽油機時(shí),不可能做到量體裁衣,剛好和抽油機的功率檔次相匹配,一般留有一定的功率裕量;各型抽油機在配用電動(dòng)機時(shí),為了保證抽油機在各種工況下正常運行,也留有一定的功率余量;隨著(zhù)油井由淺入深的抽取,油井的產(chǎn)液量越來(lái)越少,抽油機的負荷也相應減小。由于上述原因,就造成了抽油機的實(shí)際負載率普遍偏低,大部分抽油機的負載率在20%~30%之間,最高也不會(huì )超過(guò)50%,形成大馬拉小車(chē)的現象。而當電動(dòng)機處于輕載運行時(shí),其效率和功率因數都較低,此時(shí)若適當調節電動(dòng)機定子的端電壓,使之與電動(dòng)機的負載率合理匹配,這樣就降低了電動(dòng)機的勵磁電流,從而降低電動(dòng)機的鐵耗和從電網(wǎng)吸收的無(wú)功功率,可以提高電動(dòng)機的運行效率和功率因數,達到節能的目的。
3.1 電動(dòng)機定子繞組△/Y轉換降壓節能
由于低壓電動(dòng)機在正常工作時(shí),定子三相繞組是△接法,這樣每相繞組承受380V的線(xiàn)電壓,電動(dòng)機可產(chǎn)生額定的輸出機械功率。電動(dòng)機的轉矩是與電壓的平方成正比的,當電動(dòng)機輕載(負載率<33%)時(shí),可以將電動(dòng)機的繞組由△接法改成Y接法,使每相繞組只承受220V的電壓,即為額定電壓的1/
,電動(dòng)機的轉矩也就僅為額定轉矩的1/3。當負載率>33%時(shí),再將電動(dòng)機繞組改為△接法運行,否則,會(huì )因電流過(guò)大而燒毀電動(dòng)機。電動(dòng)機在進(jìn)行Y/△轉換時(shí)會(huì )產(chǎn)生沖擊電流。
Y/△接法轉換的實(shí)現一般采用交流接觸器實(shí)現,也可以通過(guò)晶閘管開(kāi)關(guān)實(shí)現,兩種方法在節能效果上并無(wú)差異,而轉換控制電路如何準確掌握轉換時(shí)的負載率則會(huì )對節能效果產(chǎn)生較大的影響。當負載率β<33%時(shí),不能及時(shí)進(jìn)行△→Y切換,則會(huì )影響節能效果,而當負載率β>33%時(shí),不能及時(shí)進(jìn)行Y→△切換,則會(huì )使電流過(guò)大,銅耗增加,反而費電,同樣影響節能效果。為了不使轉換頻繁發(fā)生,一般在轉換點(diǎn)的負載率之間設置一定的回差,通常采用負載率β<30%時(shí)進(jìn)行△→Y轉換,而當β>35%,進(jìn)行Y→△轉換。
3.2 晶閘管相控與調壓節電軟啟動(dòng)
晶閘管軟啟動(dòng)與調壓節電的控制框圖如圖5所示。由單片機控制串聯(lián)在電動(dòng)機定子主電路中的晶閘管的觸發(fā)角α,即可以改變加在定子繞組上的端電壓值,從而起到調壓節電的目的。其優(yōu)點(diǎn)是可以動(dòng)態(tài)跟蹤電動(dòng)機的功率因數或輸入電功率,達到最佳節能效果;在負載突然增加時(shí)也可得到及時(shí)的響應,以免電動(dòng)機堵轉;且可兼作電動(dòng)機的軟啟動(dòng)器,同時(shí)由于采用單片機控制,具有完善的保護功能。其缺點(diǎn)是造價(jià)較高,且由于對晶閘管進(jìn)行相控,會(huì )產(chǎn)生大量的諧波,對電網(wǎng)、電機以及通信系統造成不良的影響,今后這類(lèi)產(chǎn)品將因達不到電磁兼容的標準而被限制使用。
圖5 軟起動(dòng)控制器框圖
表1 按最佳調壓系數進(jìn)行調壓后節省的電量計算值
電動(dòng)機負載系數β | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 |
---|---|---|---|---|---|---|
最佳電壓調節系統Kum | 0.374 | 0.53 | 0.647 | 0.747 | 0.833 | 0.916 |
節省的有功功率ΔP/kW | 24.2 | 17.0 | 11.0 | 6.4 | 3.0 | 0.86 |
節省的無(wú)功功率ΔQ/kvar | 386.5 | 300.8 | 224.8 | 157.0 | 97.6 | 47.2 |
節省的綜合有功功率ΔP+KqΔQ | 47.4 | 35.05 | 24.5 | 15.8 | 8.86 | 3.7 |
U=UN時(shí)電機綜合損耗功率∑PC | 59.34 | 62.04 | 66.53 | 72.83 | 80.93 | 90.82 |
損耗節電率/% | 79 | 56.4 | 36.8 | 21.7 | 11 | 4 |
綜合節電率/% | 21.6 | 9.17 | 4.48 | 2.22 | 1 | 0.35 |
關(guān)于電動(dòng)機降壓節電的有關(guān)計算和校驗,國標GB12497-1995《三相異步電動(dòng)機經(jīng)濟運行》中有明確的要求。在采取調壓節電時(shí),既要達到節電的目的,又要保證電動(dòng)機軸上的出力,并有一定的過(guò)載系數,否則,當負載波動(dòng)時(shí)電動(dòng)機將發(fā)生堵轉而燒毀。電動(dòng)機輕載降壓時(shí),首先是功率因數上升,節約了無(wú)功功率。這里必須著(zhù)重指出:不是所有的降壓行為都能達到節能的目的,只有當電壓的降低程度大于轉差率及功率因數的上升程度時(shí),才能使降壓運行的電動(dòng)機效率得到提高而節能。
經(jīng)過(guò)各種檢驗計算,電動(dòng)機降壓后的最低電壓范圍大致為(0.56~0.27)UN。以上數據是以正弦波電壓計算的,若考慮到晶閘管調壓所產(chǎn)生的諧波,引起電動(dòng)機的噪音,振動(dòng)和附加發(fā)熱等因素,其節能效果還要降低。一臺Y1600—10/1730型電動(dòng)機輕載降壓節能效果的計算數據見(jiàn)表1。Y1600—10/1730型電動(dòng)機的原始數據為:額定功率PN=1600kW,額定電壓UN=6.0kV,額定電流IN=185A,額定轉速nN=595r/min,最大轉矩倍數(最大轉矩/額定轉矩)=2.22,起動(dòng)電流倍數(堵轉電流/額定電流)=5.53,起動(dòng)轉矩倍數(起動(dòng)轉矩/額定轉矩)=0.824,額定效率ηN=94.49%,額定功率因數cosφ=0.879。電動(dòng)機額定負載時(shí)的有功損耗ΣPN=93.3kW,電動(dòng)機的空載損耗Po=29.6kW,空載電流Io=46.25A,電動(dòng)機帶額定負載時(shí)的無(wú)功功率QN=918kvar,電動(dòng)機的空載無(wú)功功率Qo=480.6kvar。
由表1可知,電動(dòng)機降壓節能,主要節省的是無(wú)功功率,提高了功率因數,對供電網(wǎng)有利。而有功節電主要節省的是電動(dòng)機自身?yè)p耗的一部分,且隨著(zhù)負載率的上升而銳減:負載系數β=0.1時(shí),有功節電率為15%;β=0.2時(shí)為5.3%;β=0.3時(shí)僅為2.1%。按照國標GB124971995的規定,綜合節電為ΔP+KqΔQ,其中Kq為無(wú)功經(jīng)濟當量,其值規定為:電動(dòng)機直連發(fā)電機母線(xiàn)時(shí)取0.02~0.04;經(jīng)二次變壓時(shí)取0.05~0.07;經(jīng)三次變壓時(shí)取0.08~0.1。一般抽油機電動(dòng)機均經(jīng)三次以上變壓,可取為0.1,也即每節省10kvar的無(wú)功功率,可折合為1kW的有功功率計算。由于降壓節能時(shí)電動(dòng)機的轉速基本上不變,軸上的負載也不變,則電動(dòng)機的輸出軸功率是不會(huì )改變的,節省的只是電動(dòng)機自身?yè)p耗的一部分,表1中第7欄綜合節電率應為表中第4欄的數據除以當時(shí)的負載功率與第5欄的損耗功率之和的結果,并非為節省的綜合有功功率與電動(dòng)機額定功率之比。這是一個(gè)概念誤區,有些用戶(hù)在計算節電效益時(shí),往往用電動(dòng)機的額定功率乘以節電率再乘以運行時(shí)間來(lái)計算節省的電能(kW·h)數,這是錯誤的。
由表1可知,當負載率為β=0.4時(shí),其綜合節電率為2.22%,其節省的功率并非為PN×2.22%=35.52kW,而應當為β=0.4時(shí)的負載功率PN×0.4加上電動(dòng)機當U=UN時(shí)的功率損耗ΣPN=72.83kW,來(lái)乘以綜合節電率2.22%,即(1600×0.4+72.83)×2.22%=15.8kW。有些制造商常在這一問(wèn)題上誤導或欺騙用戶(hù),應引起注意。
通過(guò)降壓對電動(dòng)機實(shí)現軟起動(dòng)的目的,一是減少起動(dòng)時(shí)過(guò)大的沖擊電流,二是減小全壓起動(dòng)時(shí)過(guò)大的機械沖擊。那么在抽油機上使用降壓軟起動(dòng)裝置,其效果究竟如何呢?由于電動(dòng)機的轉矩與施加電壓的平方成正比,施加電壓降低了,電動(dòng)機的轉矩若達不到負載的起動(dòng)轉矩時(shí),電動(dòng)機是轉不起來(lái)的。雖然電動(dòng)機的堵轉轉矩一般小于額定轉矩,但是,當電壓降到額定電壓的70%時(shí),電動(dòng)機轉矩只有額定轉矩的50%,對于起動(dòng)轉矩超過(guò)50%額定轉矩的負載,是轉不起來(lái)的。只有當電壓升高到電動(dòng)機的轉矩足以克服負載的靜轉矩時(shí),電動(dòng)機才能啟動(dòng)。所以,△/Y轉換起動(dòng)只適合起動(dòng)轉矩<1/3額定轉矩的負載,一般的軟起動(dòng)也只適合起動(dòng)轉矩<50%額定轉矩的負載,對于重載起動(dòng)的負載就降低起動(dòng)電流來(lái)說(shuō),軟起動(dòng)器也是無(wú)能為力的。
對需重載起動(dòng)的負載,使用軟起動(dòng)并不能達到減小起動(dòng)電流的目的,更不能達到節省起動(dòng)能量的作用;但是,由于軟起動(dòng)器的電壓是呈鈄坡上升的,雖然在達到起動(dòng)轉矩前電動(dòng)機并不旋轉,但隨著(zhù)電動(dòng)機軸上扭矩的不斷增大,被拖動(dòng)的負載是慢慢被加力的,所以,用軟起動(dòng)器起動(dòng)需重載起動(dòng)的負載時(shí),可以達到減小機械沖擊的目的。對于抽油機來(lái)講,使用軟起動(dòng)器,不一定能達到減小沖擊電流的目的,但可以達到減小起動(dòng)時(shí)機械沖擊的目的,還是有一定作用的。
在某些宣傳降壓節能產(chǎn)品的文章中,提到在抽油機處于發(fā)電狀態(tài)時(shí),可以通過(guò)調整晶閘管的觸發(fā)角α改善瞬時(shí)過(guò)電壓的問(wèn)題,事實(shí)上也不盡然。當異步電動(dòng)機由于負載超速而變成異步發(fā)電機運行時(shí),是會(huì )產(chǎn)生瞬間過(guò)電壓,使電動(dòng)機端電壓高于供網(wǎng)電壓,但由于供電網(wǎng)可以看成是一個(gè)無(wú)窮大的電源系統,當穩態(tài)運行時(shí),電機端電壓只是略高于供網(wǎng)電壓,以便能量反饋。這時(shí)調整晶閘管的觸發(fā)角α,只能調整電流,即異步發(fā)電機的負荷,對于抑制過(guò)電壓并無(wú)效果。
4 無(wú)功就地補償節能型
交流異步電動(dòng)機的無(wú)功就地補償就是將補償電容器組直接與電動(dòng)機并聯(lián)運行,電動(dòng)機啟動(dòng)和運行時(shí)所需的無(wú)功功率由電容器提供,有功功率則仍由電網(wǎng)提供,因而可以最大限度地減少拖動(dòng)系統對無(wú)功功率的需求,使整個(gè)供電線(xiàn)路的容量及能量損耗、導線(xiàn)截面、有色金屬消耗量,以及開(kāi)關(guān)設備和變壓器的容量都相應減小,而供電質(zhì)量卻得以提高。
無(wú)功就地補償只對長(cháng)期空載或輕載運行的電動(dòng)機有用,對于重載運行的電動(dòng)機,因為其本身功率因數較高,沒(méi)有補償的必要。由于抽油機大部分處于輕載運行的狀況,且由于其分散性,低壓輸電線(xiàn)路較長(cháng),本身功率因數又偏低,無(wú)功就地補償的效果較好。對于抽油機這樣的負載,負載頻繁變化,沒(méi)有必要采用自動(dòng)投切的電容器組補償,這樣會(huì )增加成本,降低可靠性,是得不償失之舉。只要根據電機容量及平均負載率,選配適當容量的電容器進(jìn)行固定補償就行了,既經(jīng)濟又實(shí)用。目前,由于市售的補償電容器質(zhì)量都不好,壽命都不長(cháng),因此,應當選用質(zhì)量較好的自愈式電容器,并有自放電電路的產(chǎn)品。